Deep Exploration Bonuses for Episodic
MDPs

Juan Duque John Li
Princeton University Princeton University
jduque@princeton.edu johnli@princeton.edu

1 Background

1.1 Tabular Q-Learning:

In the classical reinforcement learning problem statement, an agent interacts with an environment
by taking an action a in a state s at some time ¢ and the environment returns a reward r and a
subsequent state s’ at time t’. We want to find the optimal @ function [7], @*, which maps the
state s and the action a to its expected reward outcome by maximizing the subsequent actions

oo
Q" (s,a) = mng[Z Y rlse = 5,0 = d

t'=t

= max E[r; + ymax Q*(s',a’)[s; = s,a; = a]
a a

To do so, we compute an estimate of the optimal @) function, Qi, which we update iteratively using
the temporal difference error and a learning rate 7

Qni(5,0) = Qus, @)+ nlre + 7 max Qu(s, @) = Qu(s,)

The optimal policy, 7%, can easily be recovered from the @ function by taking the action with the
biggest ()-value at each state.

1.2 Deep Q-learning

As described in the paper Human-level control through deep reinforcement learning [4], the table
used in regular Q-learning can be replaced by a deep neural network, parameterized by . We can
then minimize the square of the temporal difference error to train the network as follows

L(0) = E(s,a,r,s)~p[(r + 7y max Qn(s',d’;0)) — Qn(s, a;0)]
The gradient of the Loss L with respect to the parameters [6] 6 is given by
Von L(0) = E(s,a,r,5)~p[((r + 7 max Qn(s',d'10)) — Qn(s.a;0)Von Qn(s, a;0))]

2 Model Description

We aim to improve on existing methods that leverage state-action counts ([2], [5]) to improve
exploration in reinforcement learning. In addition to bonuses that reward less visited state-action
pairs, we introduce a depth based exploration bonus that rewards state-action pairs that are ”far”
from the starting state of the environment. More formally, we define the depth of a state-action
pair, D(z',a’), as the minimum number of state-action pairs that precede (2’,a’). To compute the
depth we initialize D(x,a) = H for all states « and actions a, and then at each step of the episode
we update as follows
D(2',a’) = min(D(z',a’), D(z,a)+1)

Where (z, a) is the state-action pair selected at the previous step. Now, we can add a depth-based
bonus to the temporal difference error

Qnr1(s,a) = Qn(s,a) +n(re + 7 max Qn(s',d') +bp + by — Qn(s,a)) (1)

L(Q) = E(s,a,'r,s/)ND[(r +y HlaE}X Qh(sla a/; 9) +bp + bN) - Qh(sa a; 0)]2 (2)

Equation (1) provides the update rule in the tabular setting, whereas equation (2) is the loss for
the deep learning setting, with

bp = pv/D(x,a), by = L

N(z,a)

Here p and 8 are constants and N (z, a) is the number of times the state-action pair (x, a) has been
visited. The bonus by is chosen with the settings described in [5]. We now construct a variation
of the Q-learning algorithm described by [2], that takes advantage of both of these bonuses.

Algorithm 1: UCB Q-learning with depth bonuses
initialize Qp(x, a) randomly, Np(z,a) < 0, Dp(z,a) < H for all (z,a,h) € S x A x [H]
for episode £k =1,...,K do

receive

D(z1,0) « 0

ap—1 <0

for episode k =1,...,K do

Take action aj, < arg max,, Qn(xp,a’) and observe 11

t= Nh((Eh, ah) — Nh(ach, ah) +1

d = D(zp41,an) < min(D(zpi1,ap), D(@p,ap—1) +1)

by = i bp = pVd

Qn(zn, an) < (1 — a)Qn(zn, arn) + ar[ra(zn, an) + Vg1 (pe1) + by + bp)
Vi(zn) <= maxyca Qn(zn, a’)
ap—1 < ap

return a;

Where «; is the learning rate given by % Intuitively, we would like the algorithm to explore
state-action pairs with higher depth first, following the principle of optimistic exploration. In such
way, the agent is more likely to find the terminal states in MDPs with long term or delayed rewards.
By finding these terminal states earlier and their corresponding trajectories, the algorithm is likely

to converge faster to more optimal policies.

3 Theoretical Results

Regret bounds on model-free RL algorithms with episodic MDP
Algorithm Regret Time Space
Q-learning e-greedy [3] Q(min{T, A1/%})
Delayed Q-learning [1] Os,a,1(T*%)
Q-learning (UCB-H) [2] O(VH*SAT) o) O(SAH)
Q-learning (UCB-B) [2] O(VH3SAT)
Lower bound O(VH?2SAT) - -

Jin et al. [2] bounds the total regret over K training episodes as O(v H4SAT:) with probability
1 — p, where S is the size of the state space, A is the size of the action space, H is the maximum
number of steps in each training episode, and ¢ = log(SAT/p). We show that our depth-based
exploration bonus achieves the same asymptotic regret bound. Our proof is largely based on the
proof presented in that paper, with only slight modifications to lemma 4.3 and the proof of the
main theorem.

First we strengthen lemma 4.3 by allowing b; to include an additional O(y/H/K) exploration
bonus.

Lemma 3.1. There exists an absolute constant ¢ > 0 such that, for any p € (0,1), letting by =
e/H3u/t+pvVH with p = ¢/ K, we have f; = 23°1_, aib; < 4dev/(H30 + H)/t and, with probability
at least 1 — p, the following holds simultaneously for all (z,a,h,k) € S x A x [H] x [K]:

t
0<(QF —Qh)(w,a) <alH+ Y ai(Vifty = Vi)@' y) + Bra
i=1
where t = NJ¥(z,a) and kq, ...,k <k are the episodes where (z,a) was taken at step h.

Proof. The proof is mostly the same as the proof of lemma 4.3 in Jin et al. [2]. It suffices to
show that the new bound on §; holds when b, = cy/H3:/t + pVH. This is straightforward, as
t = Nf(z,a) < K (the state-action pair (z,a) can appear at step h at most K times—once in each
of the K episodes) and p = ¢/K:

t
Bra/2 = Z agb;
i=1

= Zai(C\/HT/i—i— pVH)
i=1
= Zai(c H3./i+ c\/g)

i=1

< Zai(c\/H%/i + ¢/ H/i) (because t < K)

= Zai(c (H3.+ H)/i)

€ [ev/(H3u + H)/t,2c\/(H3 + H)/t] by lemma 4.1.a in the paper

Using this lemma, we obtain Jin et al. [2]’s regret bound for our modified exploration strategy so
long as p < c.

Theorem 3.2. There exists an absolute constant ¢ > p > 0 such that, for any p € (0,1), if
we choose by = cy/H3./t and bp = pVH, then with probability 1 — p, the total regret of UCB
Q-learning with depth bonuses (our Algorithm 1) is at most O(V HASAT), where v := log(SAT/p).

Proof. Again the proof is largely the same as in Jin et al. [2]. We follow the proof in the paper up
to the following point, where 8y := (V;F — V,7*)(2f) and ¢} := (V}F — V*)(af):

K K K
Regret(K) = > (Vi = W)(a}) < 3 (V' = Vi™)(eh) = 3 _ ot

The paper then establishes the following bound on 52, using lemma 4.3 along with a number of
other lemmas:

t
h < afH + Z by + B — Ghir + k1 + &g (3)
i=1
We have checked that each of the other lemmas used to establish this bound still hold in our
setting. This allows us to use the same argument to establish the following modified bound, where
we have applied our lemma 3.1 in place of [2]’s lemma 4.3:
t
S < aYH + Zai(iﬁﬁll + Bra = Phr + Ohir + € (4)
i=1
Where the only difference is the ;¢4 term. Our lemma 3.1 is applicable because our depth-based
exploration bonus is pvd = Vd/K < O(y/H/K). We use the fact that d < H, which holds
because D(x,a) = H initially and any reachable state-action pair can be at most H steps away
from the initial state.
Jin et al. [2] proceeds to bound each of the terms in the right-hand side of (3), and then puts

these bounds together to get a bound for the total regret Zszl o%. Using the same argument, we
obtain a regret bound for our modified exploration strategy; the only difference is that our argument
accounts for an extra O(K H) term resulting from depth-based bonuses. Letting ' = K H, we have:

K
Regret(K) = Z 68 < O(VHASATL) + B;.q4 (by argument in the paper and (4))
k=1
K

< OWHASATL)+ > B 4

k=1

N,i((w,a) 3
— O(WH'SAT) +0(1)- 3 3 ,/HLni*H

z,a n=1

O(VHYSAT:) + O(VH3SAK)
< O(VH*SAT:) + O(VH2SAT)
— O(VH*SAT)

IN

O

Therefore our exploration bonus does not affect the regret bound proved by Jin et al. [2]. We now
proceed to test the depth exploration bonus strategy empirically in different MDPs with their own
reward structures.

4 Experiments

4.1 Acrobot

Description: The first environment described by Sutton (1996) consists of a system composed
of two joints and two links where the joint between the links has an actuator. At the beginning
of the episode, the links hang down and the agent must use the actuator to swing the lower joint
to a desired height. The actuator, however is not strong enough to raise the joints in a single try,
so the agent must accumulate velocity by swinging forwards and backwards. We use an OpenAl
gym implementation with discrete actions (push left, no push, push forward).

Setup: We allow the agent to run for 100 episodes, where each episode finalizes after a maximum
number of steps 1000 or when the goal is reached. The hyperparameters chosen are as follows:
€0 = 0.9, €00 = 0.05, H = 1000, 5 = 0.1, p = 0.01.

4.2 Cartpole

Description: In the Cartpole environment, a cart is attached to
a pole through a joint. The cart moves in a friction-less track
and must prevent the pole from reaching an angle greater than
15 degrees with respect to the vertical axis. The cart should not
exceed certain x-axis positions. The episode ends if any of the
constraints are violated and the agent receives a reward of 1 for each 3
time-step it remains within the constraints. We use an OpenAl
gym implementation with discrete actions (push left, no push, push
forward), and a state tuple composed by cart velocity, pole velocity Figure 1: A frame from the
and the position values of the cart and the pole. Cartpole environment

Setup: We allow the agent to run for 200 episodes, where each episode finalizes after a maximum
number of steps 300 or when the goal is reached. The hyperparameters chosen are as follows:
€0 = 0.9, €5 = 0.05, H =300, 8 = 0.1, p = 0.01.

4.3 Mountain Car

Description: We test our approach on ”"Mountain Car”as de-
scribed by Andrew Moore: an environment in which a car located
in a valley between two mountains receives a reward if it reaches
the top of the mountain at its right. However, the car’s engine is
not strong enough to climb the mountain in a single pass. Thus,
the car must accumulate enough momentum, by swinging between
the two mountains, in order to reach its objective. We use an Ope-
nAl gym implementation with discrete actions (push left, no push,
push forward) and a state tuple composed by velocity and position Figure 2: A frame from the
values. This environment is well known in the reinforcement learn- Mountain Car environment
ing literature for requiring an agent to explore the environment

thoroughly.

Setup: We allow the agent to run for 100 episodes, where each episode finalizes after a maximum
number of steps 10000 or when the goal is reached. The hyperparameters chosen are as follows:
€0 = 0.9, e5c = 0.05, H = 10000, 5 = 0.1, p = 0.01.

5 Experimental Results

5.1 Acrobot

—300 4 =300 1
o —400 ~400 -
5 =
=]
& | =
= 500 2 _sop 4
= Ll
= =
B =
£ -600 1 2
= E —600
U \' ()

_700 1 Algorithm \ f Algorithm

= depth+counts —700 4 — depth+counts
ounts
-s00 L : : : : : , , , , e
0 0 40 60 80 100 0 20 a0 60 80 100
Number of episodes Number of episodes
(a) (b)

Figure 3: (a) Compares the average cumulative reward our algorithm to the variant with only
counts bonuses. (b) Compares the average cumulative reward our algorithm to e-greedy. Each
trial (run of total number of episodes) was done 30 times to get statistical significance. The hard
colored line shows the average, whereas the light colored region shows a 75% confidence interval.

Acrobot is an environment with delayed rewards (only given at the end of the episode), this is
showcased in Figure 3: (b) where both algorithms confidently outperform epsilon greedy. Epsilon
greedy is known to have worst case exponential performance in environments with delayed rewards
[2]. The difference between exploring with counts only bonuses vs counts and depths is almost
negligible, although using the depth bonuses seems to have an edge in earlier episodes.

5.2 Cartpole

Algorithm
120 1
—— depth+counts
counts
100 4 —
o e-greedy
2
2 8
E
B 01
El
£
O 40
20 1

T T T T T
0 5 50 75 100 125 150 175 200
Number of episodes

(a)

Figure 4: Compares the average cumulative reward of the three exploration algorithms in the
Cartpole environment. Each trial (run of total number of episodes) was done 30 times to get
statistical significance. The hard colored line shows the average, whereas the light colored region
shows a 75% confidence interval.

In Cartpole, rewards are immediate and state-action pairs tend to be repeated multiple times
in the optimal policy. It is no surprise then that epsilon greedy outperforms both bonus based
methods. From the two methods, including the depths bonus is marginally better which makes
sense intuitively: it is better to explore state-action pairs with depth as these are likely to have
higher cumulative reward.

5.3 Mountain Car

—3000

—4000

Cumulative Reward
| | |
-l o L%
[=] =] [=]
= =1 =
(=] (=] (=]

Algorithm

— depth+counts
counts

—3000 — e-greedy

—8000

0 20 40 &0 80 100
Number of episodes

(a)

Figure 5: Compares the average cumulative reward of the three exploration algorithms in the
Mountain Car environment. Each trial (run of total number of episodes) was done 30 times to get
statistical significance. The hard colored line shows the average, whereas the light colored region
shows a 75% confidence interval.

Our algorithm confidently outperforms the other exploration strategies in the Mountain Car en-
vironment. The rewards in this environment are very delayed compared to the other ones, thus
thorough exploration is necessary to find the optimal policies. By rewarding deep state action
pairs the agent is more likely to find the terminal states at earlier episodes, ultimately leading to
faster convergence.

6 Conclusion

Deep exploration bonuses have been shown to be particularly effective in MDPs that have delayed
rewards when compared to the naive exploration strategy (e-greedy) and the count based bonuses.
The theoretical bounds on the regret for this exploration strategy have been supported empirically
on three different control tasks. We hope that bonus functions that make use of a depth heuristic
can be further explored to achieve even better results, as it is not yet clear which one of them is
more effective.

References

hwan Oh, M., & Iyengar, G. (2018). Directed exploration in pac model-free reinforcement learning.

Jin, C., Allen-Zhu, Z., Bubeck, S., & Jordan, M. I. (2018). Is g-learning provably ef-
ficient? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, &
R. Garnett (Eds.), Advances in neural information processing systems (Vol. 31). Cur-
ran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2018/file/
d3b1£fb02964aa64e257£9f26a31f72cf-Paper.pdf

Kearns, M., & Kaelbling, L. (2002). Near-optimal reinforcement learning in polynomial time. In
Machine learning (pp. 209-232).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... others
(2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529.

Rashid, T., Peng, B., Bohmer, W., & Whiteson, S. (2020). Optimistic exploration even with a
pessimistic initialisation.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... others
(2016). Mastering the game of go with deep neural networks and tree search. nature, 529(7587),
484.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Second ed.).
The MIT Press. Retrieved from http://incompleteideas.net/book/the-book-2nd.html

https://proceedings.neurips.cc/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
http://incompleteideas.net/book/the-book-2nd.html

	Background
	Tabular Q-Learning:
	Deep Q-learning

	Model Description
	Theoretical Results
	Experiments
	Acrobot
	Cartpole
	Mountain Car

	Experimental Results
	Acrobot
	Cartpole
	Mountain Car

	Conclusion

