
Discovering Intrinsically Motivated Goals

Juan Duque
Microsoft Corp.

juduqu@microsoft.com

Charles Isbell
Georgia Institute of Technology

isbell@cc.gatech.edu

Michael loss
Georgia Institute of Technology

loss@math.gatech.edu

Abstract

One of the fundamental problems in reinforcement learning is optimizing a policy in
environments with sparse and delayed rewards. In this paper we propose a framework
that extends from the hierarchical DQN algorithm (Kulkarni, Narasimhan, Saeedi, &
Tenenbaum, 2016) to allow agents to explore the environment motivated by intrinsically
defined goals. We show that our methodology effectively yields better results than DQN
in complex environments that are often hard to explore. Our contribution to the h-
DQN algorithm is using a spectral framework to determine goals, which we define as a
discrete number of sub-regions of the state space. We name this new algorithm spectral
h-DQN (sh -DQN) and it runs end to end without human intervention.

1 Introduction

Deep reinforcement learning has provided a methodology to improve decision making in a variety
of domains, including Atari games (Mnih et al., 2015), Go (Silver et al., 2016) and autonomous
driving (Chen, Liu, Everett, & How, 2017). In these tasks, reinforcement learning agents train a
non-linear function approximator to map the state space to the action space in such way as to
maximize a defined notion of reward in an environment. This approach, nonetheless, has shown
significant limitations in environments with sparse and delayed rewards (Liu, Machado, Tesauro,
& Campbell, 2017). Many of the efforts in reinforcement learning have tried to deal with these
restrictions using temporally extended actions (Sutton, Precup, & Singh, 1999) and temporally
extended sub-policies (Kulkarni et al., 2016), which simplify the exploration space by using layers
of abstraction .

1

In nature, humans consistently decompose complicated tasks in smaller sub-problems that are eas-
ier to solve. Hierarchical Reinforcement Learning (HRL) is a mathematical framework derived from
this idea, which formalizes decision processes as a composition of multiple optimization problems
(Kulkarni et al., 2016). Despite their success in complex problems (Vezhnevets et al., 2017), many
HRL algorithms rely on manual intervention for determining sub-goals. In this work, we introduce
a methodology that allows h-DQN agents to discover sub-goals in an unsupervised manner. In
such way, our framework allows the usage of Hierarchical Reinforcement Learning in complex, more
general problems without human intervention.

Our contributions are formulating sub-goals as subsets of the state space and finding a reasonable
partitioning of the state space into sub-goals that can be effectively differentiated. We do so by
discretizing the state space into small sub-regions and constructing an adjacency matrix during
an initial exploration phase. Then, we associate highly interconnected regions into clusters using
spectral graph partitioning. Finally we train a non linear function approximator to serve as a critic
that distinguishes between different clusters and provides the intrinsic reward.

2 Literature Review

2.1 The Options framework

Modelling higher levels of abstraction is an intuitive approach for dealing with complicated tasks.
In reinforcement learning, the options framework (Sutton et al., 1999) allows the modelling of
higher temporal abstractions in Markov decision processes (MDPs). This framework defines a
two-level hierarchy in which the bottom is given by options: temporal policies, over a set of time
steps, that terminate under a stochastic function . The top of the hierarchy is a policy over options
that terminates when the overarching goal is met. Options are popular in reinforcement learning
because they decompose tasks into more atomic subtasks that are easier to learn.

2.2 Hierarchical Deep Reinforcement Learning

Deep reinforcement learning techniques have gained significant attention in the past years for
their success in problems with high-dimensional inputs (Mnih et al., 2015). Still, these methods
perform poorly in tasks with convoluted state spaces and delayed rewards. A recent paper by Tejas
Kulkarni(Kulkarni et al., 2016) integrates deep reinforcement learning with temporal abstractions.
In this paper, a hierarchy is established with a controller and a meta-controller. The controller
learns a policy, over a sequence of states, using an internal critic that provides a reward when
an internal goal is achieved. The meta-controller learns a policy over goals, that maximizes the
extrinsic reward on the environment. Our paper builds upon this hierarchical deep reinforcement
learning framework.

2.3 Option discovery in RL

Unsupervised option discovery is an open problem in the state of the art of reinforcement learning.
In the past, many approaches have been tried to deal with this issue. A formulation by (Mannor,
Menache, Hoze, & Klein, 2004) uses k-means clustering to partition the state space and then defines
options as transitions between the means of these clusters. More recent advances use clustering to
define options, but without a predetermined number of clusters. Instead, new clusters are created
for each state that is more than a selected number of deviations away from the closest cluster
(Karimpanal & Wilhelm, 2017).

2

A different proposal uses the recent history of the states visited by the agent to create a local
transition probability graph. Then the graph is partitioned into two, by finding a cut with the
lowest between-states transition probability. Potential options are identified as the states that are
endpoints of the edges that cross the cut (Şimşek, Wolfe, & Barto, 2005).

Yet, another approach from (Liu et al., 2017) proposes a Laplacian framework to discover options.
A Laplacian matrix is constructed by subtracting a diagonal matrix from the adjacency matrix
representation of the Markov decision process. Then the Laplacian matrix is diagonalized and the
eigenvectors are used as proto value functions, i.e. alternative representations of the MDP. These
proto value functions can be interpreted as options, in which the reward function is dependent on
the geometry of the environment.

3 Model

Spectral graph partitioning: Given a Markov decision process with finite states and actions,
〈 S, A, p, r, γ〉 , we can represent the state space, S, as a state-transition graph where each state,
s, corresponds to a vertex in the graph. For each state pair, s1 × s2 ∈ S×S, we define a directed
edge e(s1, s2) ∈ E if there exists an action a ∈ A, for which p(s2|s1, a) > 0. We can construct
an estimate of this state-transition graph by allowing the agent to interact with the environment
throughout a fixed number of random walks.

To formalize the notion of goal we define the finite set of all goals, G, as a partition of the state
space, S. Intuitively, we want this partitioning to capture a notion of similarity between states.
Here we define this similarity metric as the interconnectedness between states, with the objective
of separating regions of S that share few transitions between them and capture bottlenecks. We
use assume symmetrical transitions, i.e. undirected edges to simplify the following optimization
problem:

Without loss of generality1, we want to find some labeling y ∈ [−1,+1]n, where n = |S| is the
number of states, such that

∑
(i,j)∈E

(yi − yj)2 is minimal.

This is the formulation of spectral graph partitioning, we want to find a labeling of the graph into
two subsets such that the number of edges crossing the split is minimal. As shown by Miroslav
Fiedler, we can relax the constraints of the formulation above and choose instead some soft labeling
x ∈ Rn such that x is a unit vector, orthogonal to the first eigenvector λ1. Thus we get:

argmin
x

∑
(i,j)∈E

(xi − xj)2

||x||2
= argmin

x

n∑
i,j=1

(Aij −Dij)(xixj)

||x||2
= argmin

x

xTLx

xTx
= λ2 (1)

Where A is the adjacency matrix of the state transition graph, D is the graph’s degree matrix,
and L is the graph’s Laplacian matrix. The spectral graph partitioning algorithm then sorts the
components of the second smallest eigenvector of the graph’s Laplacian and chooses some point,
usually the median, to split the vertices of the graph into two subsets. Other, more expensive,
methods of splitting exist that attempt to minimize normalized cut in 1-dimension. We assign
each subset resulting from this partitioning, g, to be one of the goals in our algorithm.

1Note that this labeling partitions the graph into only two subsets, but we can easily overcome this by recursively
partitioning the subsets until reaching the desired number of partitions.

3

Hierarchical Deep Reinforcement Learning: As described in the paper of the same name
by Kulkarni et al., we define a Q∗1 function approximator for the controller, which maximizes the
expected implicit reward given a state s, a goal, g, and an action, a:

Q∗1(s, a; g) = max
πa g

E[

∞∑
t′=t

γt
′−trt′ |st = s, at = a, gt = g, πa g]

= max
πa g

E[rt + γmax
at+1

Q∗1(st+1, at+1; g)|st = s, at = a, gt = g, πa g]

(2)

A similar Q∗2 function approximator maximizes the expected extrinsic reward from the environment
for the meta-controller:

Q∗2(s, g) = max
πg

E[

t+N∑
t′=t

ft′ + γmax
g′

Q∗2(st+N , g
′)|st = s, gt = g, πg] (3)

Where N denotes the number of time steps until the meta-controller stops the current goal, πa g =
P (a|s, g) is the policy over the actions and πg = P (g|s) is the policy over goals. Q∗(s, a; g) ≈
Q(s, a; g) and Q∗(s, g) ≈ Q(s, g), Q1 and Q2 namely, are neural networks parametrized by θ1 and
θ2 respectively. We can then minimize the square of the temporal difference error as follows:

L1(θ1, i) = E(s,a,g,r,s′)∼D1
[(r + γmax

a′
Q1(s′, a′; g, i, θ1))−Q∗1(s, a; g, i, θ1)]2 (4)

Where i is the training episode number and D1 denotes the replay buffer of the experiences
(s, a, g, r, s′) stored by the controller. We can differentiate with respect to θ1 to find the gradient
for the controller:

∇θ1,i L1(θ1, i)

= E(s,a,g,r,s′)∼D1
[((r + γmax

a′
Q1(s′, a′; g, i, θ1))−Q∗1(s, a; g, i, θ1)∇θ1,iQ1(s, a; g, i, θ1))]

(5)

A similar procedure is used to derive the loss L2(θ2, i) and its gradient ∇θ2,iL2(θ2, i).

Other considerations for spectral graph partitioning: Since spectral graph partitioning
only works well in fully connected graphs, we use different methods to discretize the state space
into a tractable number of regions either using k-means clustering or rounding the values of each
of the components of the state tuple, s. This vastly reduces the state space size and increases the
connectivity between vertices of the state transition graph.

The other important consideration with regards to spectral graph partitioning is that, once the
labeling has been assigned, there is no easy way to make predictions for states that have never
been seen before. To deal with this problem, we use the states and the labels generated by the
spectral graph partitioning algorithm to define a supervised learning problem and train another
function approximator, C, with parameters θ3. Where C∗(s) is the correct spectral graph label of
the state, s, and C∗(s) ≈ C(s; θ3).

Learning algorithm: We learn the parameters θ1 and θ2 using stochastic gradient descent at each
iteration (i.e. step of the algorithm). The controller collects experience tuples,([s, g], a, rin, [s

′, g]),
at every time step and the meta-controller collects experience tuples,(s, g, rex, s

′) when the goal
terminates (i.e. when a goal is re-picked or the episode ends). Here rin is the intrinsic reward
provided by an internal critic when the goal is reached and rex is the extrinsic reward of the
environment.

4

4 Experiments

Figure 1: A sample frame
of the Mountain Car environ-
ment

Environment description: We test our approach on ”Mountain
Car”as described by Andrew Moore: an environment in which a
car located in a valley between two mountains receives a reward if
it reaches the top of the mountain at its right. However, the car’s
engine is not strong enough to climb the mountain in a single pass.
Thus, the car must accumulate enough momentum, by swinging
between the two mountains, in order to reach its objective. We use
an OpenAI gym implementation with discrete actions (push left,
no push, push forward) and a state tuple composed by velocity and
position values. This environment is well known in the reinforce-
ment learning literature for requiring agent to perform very good
exploration to be solved.

Setup: We allow the agent to explore the environment throughout 10 random walk episodes,
where each episode finalizes after a maximum number of steps 10000 or when the goal is reached.
We use this experience to build the state-transition graph and perform spectral graph partitioning
with 10 partitions. We introduce an extra goal that only terminates when the state is terminal.

Algorithm 1: Spectral Hierarchical DQN

graph← [];
for i← 1 to n do

Initialize environment and get initial state scurrent;
j ← 0;
episodeStates← [];
while not (scurrent is terminal or j > m) do

Select random action a;
Execute a and obtain next state snext;
Append (scurrent, snext) to episodeStates;
scurrent ← snext;
j ← j + 1;

end
Append episodeStates to graph;
i← i+ 1;

end
A← ConstructAdjacencyMatrix(graph);
labels← SpectralGraphPartitioning(A);
goals← Set(labels);
Append length(goals) + 1 to goals;
Initialize C with parameters θ3;
Train C with states in graph and labels;
Run the Hierarchical DQN algorithm with goals and critic(C, s, g, goals, done);

Algorithm 2: Critic

if (g == C(Discretize(s))) or (g == length(goals) and done) then
return 1;

end
return 0;

5

Results: We plot the output of the spectral graph partitioning algorithm on our sample of the
state space to get an intuition of the geometry of the environment. As seen in Figure 2, the spiral-
like pattern seems to indicate that clusters are formed primarily according to the total energy
of the car, i.e., the sum of its potential and kinetic energies. The shape of the clusters captures
important information about the dynamic of the environment that can be useful to optimize a
wide range of different objectives.

Figure 2: (a) Spectral graph partitioning on the discretized sampled state space. The x axis is the
x position of the car, the y axis is the velocity. (b) The prediction of the cluster approximator,
C, to a generalization of the state space.The x axis is the x position of the car, the y axis is the
velocity.

We ran the training phase of the sh-DQN algorithm 10 times, calculated its average cumulative
reward and compared it with a similar average from the training phase of the DQN algorithm.
The sh-DQN algorithm converged to a local maximum in all but one of the training runs. The
DQN algorithm, on the other hand, only converged in two of its runs. It is clear that the sh-DQN
algorithm reaches a sub-optimal maxima and fairly easily outperforms DQN in this environment.
The following are the episode reward averages within a 95% confidence interval:

Figure 3: Results in the Mountain Car environment: Total rewards, at the end of each
episode, for the sh-DQN and DQN algorithms during their training phases . The x axis is the
number of episodes, the y axis is the total cumulative reward

6

5 Conclusion

As stated by Kulkarni et al. (2016), the main strength of h-DQN, by extension also of sh-DQN,
is that intrinsically motivated goals allow for more efficient exploration of the environment. This
ultimately allows sh-DQN to easily beat DQN in environments like Mountain Car, which require
agents to do throughout exploration to converge to local optima. These results were expected as
we were extending from h-DQN.

Ultimately we have shown that our formulation of goals as spectral partitions effectively captures
the geometry of the environment, allowing the agent to easily learn tasks using these goals as
abstractions. In such way, we have been successful in contributing to the completion of the h-DQN
algorithm. In the future, however, we would like to extend the sh-DQN formulation to not depend
on the dicretization of the environment and allow goals to be learned online.

6 Acknowledgements

We would like to thank Himanshu Sahni for all the useful discussions that provided invaluable
guidance for this project. Special thanks to Saurabh Kumar for proposing using clusters as possible
goals. Finally, thanks to Alejandro Aristizabal and Alen Polakof for providing assistance in the
implementation of the algorithm.

References

Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In 2017 ieee international
conference on robotics and automation (icra) (pp. 285–292).

Karimpanal, T. G., & Wilhelm, E. (2017). Identification and off-policy learning of multiple
objectives using adaptive clustering. Neurocomputing , 263 , 39–47.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum, J. (2016). Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances
in neural information processing systems (pp. 3675–3683).

Liu, M., Machado, M. C., Tesauro, G., & Campbell, M. (2017). The eigenoption-critic framework.
arXiv preprint arXiv:1712.04065 .

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004). Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on machine
learning (p. 71).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . others
(2015). Human-level control through deep reinforcement learning. Nature, 518 (7540), 529.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., . . . others
(2016). Mastering the game of go with deep neural networks and tree search. nature,
529 (7587), 484.

Şimşek, Ö., Wolfe, A. P., & Barto, A. G. (2005). Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the 22nd international conference on
machine learning (pp. 816–823).

Sutton, R. S., Precup, D., & Singh, S. (1999). Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112 (1-2), 181–211.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., & Kavukcuoglu,
K. (2017). Feudal networks for hierarchical reinforcement learning. In Proceedings of the
34th international conference on machine learning-volume 70 (pp. 3540–3549).

7

